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Abstract: - A mixed finite element procedure for plane elasticity system in a cracked  domains is introduced and 

analyzed. There is a member of the family for each polynomial degree, beginning with degree two for the stress 

and degree one for the displacement, and each is stable and affords optimal order approximation. The simplest 

element pair involves 24 local degrees of freedom for the stress and 6 for the displacement. We also construct a 

lower order element involving 21 stress degrees of freedom and 3 displacement degrees of freedom which is, we 

believe, likely to be the simplest possible conforming stable element pair with polynomial shape functions. 

The mixed formulation is used in elasticity for incompressible materials such as rubber, its use for linear elasticity 

has been discussed by many researchers, in this section we will study the compatibility of the mixed formulation 

cracked domains and compare it with the conventional method.The numerical results are compared with some 

previously published works or with others coming from commercial code. 

Keywords: Elasticity problem; mixed finite element method; Lower order element; linear fracture mechanics,

1.Introduction 

Mixed finite element methods for linear elasticity are 

based on approximations of a stress-displacement 

system derived from the Hellinger-Reissner 

variational principle [7], in which both displacements 

and stresses were approximated simultaneously. 

For 𝒌 = 𝟏 the stress element is fairly complicated, 

involving 24 degrees of freedom on each triangle. A 

slightly simpler element, in which the displacement 

is sought as a piecewise rigid motion (3 degrees of 

freedom per triangle), and the stress space involves 

21 degrees of freedom per triangle, was also shown 

to be stable. This method is first order in both stress 

and displacement. 

Many mixed finite element methods have been 

developed for plane elasticity, and generally 

speaking, they can be grouped into two categories: 

methods that enforce the symmetry of the stress 

weakly, and methods that enforce the symmetry 

exactly (strongly). In the former category, the stress 

tensor is not necessarily symmetric, but rather 

orthogonal to anti-symmetric tensors up to certain 

moments. Weakly imposed stress symmetry methods 

also introduce a new variable into the formulation 

that approximates the anti-symmetric part of the 

gradient of u; see for example [2, 3]. On other hand, 

exactly symmetric stress methods have been 

much more difficult to construct. The first class of 

inf-sup stable methods were the so called composite 

elements [4, 5]. 

As mentioned, conforming mixed finite elements for 

elasticity tend to be quite complicated. The earliest 

elements, which worked only in two dimensions, 

used composite elements for stress [11, 12]. Much 

more recently, elements using polynomial shape 

functions were developed for simplicial meshes in 

two [14] and three dimensions [16, 17] and for 

rectangular meshes [14, 15]. Heuristics given in [13] 

and [16] indicate that it is not possible to construct 

significantly simpler elements with polynomial shape 

functions and which preserve both the conformity 

and symmetry of the stress. 

Section 2 presents the model problem used in this 

paper. The discretization by mixed finite elements 

described is in section 3. Error analysis described is 

in section 4. In section 5, numerical experiments 

within the framework of this publication were carried 

out.  

2.Governing equations of linear elasticity  

The equilibrium equations and boundary conditions 

are  

The system of (anisotropic, inhomogeneous) linear 

elasticity consists of the constitutive equations:  

𝝈 = 𝑪: 𝜺 (5)  

𝛁. 𝝈 + 𝒇 = 𝟎 𝒊𝒏 𝛀 (1)  

𝝈. 𝒏 = 𝒕 𝒐𝒏 𝚪𝒕 (2)  

𝝈. 𝒏 = 𝟎 𝒐𝒏 𝚪𝒄+ (3)  

𝝈. 𝒏 = 𝟎 𝒐𝒏 𝚪𝒄− (4)  
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where C is the Hooke tensor, C is assumed here to 

have constant coefficients. Its inverse (compliance 

tensor) will be denoted by E. Hence  

𝝈 = 𝑪: 𝜺 ⇔ 𝜺 = 𝑬: 𝝈. (6)  

For a homogeneous isotropic medium and for 𝜏 
symmetric we have  

𝑪𝝉 = 𝟐𝝁𝝉 + 𝝀𝒕𝒓(𝝉)𝜹, 

where 𝜹  is the unit (identity) second-order tensor 

and 𝝀 ≥ 𝟎 and 𝝁 ≥ 𝟎 are the Lamé constants. 

The trace operator applied to a tensor 𝝉 is given by  

𝒕𝒓(𝝉) = 𝝉𝟏𝟏 + 𝝉𝟐𝟐 = 𝝉: 𝜹. 

 We consider small strains and displacements. The 

kinematics equations therefore consist of the strain-

displacement relation  

𝜺 = 𝜺(𝒖) = 𝛁𝒔𝒖 (7)  

 where 𝛁𝒔𝒖 =
𝟏

𝟐
(𝛁𝒖 + 𝛁𝒖𝑻) is the symetric part of 

the the gradient operator, and the boundary 

conditions  

  

 
FIG. 1 : BODY WITH INTERNAL BOUNDARY SUBJECTED 

TO LOADS. 

We set  

which is a Hilbert space under the norm  

 ‖𝝈‖𝑯(𝒅𝒊𝒗,𝛀) = (‖𝝈‖
𝟐 + ‖𝛁.𝝈‖𝟐)

𝟏

𝟐  

And we set  

𝑯𝒈(𝒅𝒊𝒗,𝛀) = {𝝉 ∈ 𝑯(𝒅𝒊𝒗,𝛀); 

𝝉. 𝒏 = 𝒈 𝒐𝒏 𝚪𝒕} 
(10)  

𝑳𝒅𝒊𝒔
𝟐 (𝛀) = {𝒖

∈ (𝑳𝟐(𝛀))𝟐, 𝒖 𝒅𝒊𝒔𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔 𝒐𝒏 𝚪𝑪}. 
(11)  

Then the standard weak formulation of the 

equilibrium equations is the following: 

Find 𝝈 ∈ 𝑯𝒕(𝒅𝒊𝒗,𝛀) and 𝒖 ∈ 𝑳𝒅𝒊𝒔
𝟐 (𝛀) such that : 

For a matrix field 𝝉, 𝑑𝑖𝑣𝜏 is the vector obtained by 

applying the divergence operator row-wise 

  

and the colon denotes the scalar product  

𝝈: 𝝉 = ∑

𝟐

𝒊,𝒋=𝟏

𝝈𝒊𝒋𝝉𝒊𝒋.  

Let the bilinear forms a and b, and the linear forms l 

and s such that:  

𝒂(𝝈, 𝝉) = ∫
𝜴

(𝑬: 𝝈): 𝝉𝒅𝒙 
(14)  

𝒃(𝝈, 𝒖) = ∫
𝜴

𝒖. 𝒅𝒊𝒗𝝈𝒅𝒙 
(15)  

𝒍(𝒗) = −∫
𝜴

𝒇. 𝒗𝒅𝒙 
(16)  

𝒔(𝝉) = ∫
𝜞𝒖

𝒖𝝉. 𝒏𝒅𝜞, 𝒇𝒐𝒓 𝒂𝒍𝒍 𝝉 ∈ 𝑯(𝒅𝒊𝒗,𝜴). 
(17)  

 

The underlying weak formulation (12)-(13) may be 

restated as: 

Find 𝝈 ∈ 𝑯𝒕 and 𝒖 ∈ 𝑳𝒅𝒊𝒔
𝟐 (𝛀) such that :  

 

Theorem 1. Let 𝑬 and 𝜳  be real Hilbert 

spaces,  𝒂(𝝃𝟏, 𝝃𝟏)  a bilinear form on 𝑬 × 𝑬 , and 

𝒃(𝝃,𝝍) a bilinear form an 𝑬 ×𝚿. Set 

𝒖 = 𝒖  𝒐𝒏  𝚪𝒖 (8)  

𝑯(𝒅𝒊𝒗,𝛀) = {𝝈|𝝈 ∈ (𝑳𝟐(𝛀))𝟐
𝟐
; 

𝝈𝒊𝒋 = 𝝈𝒋𝒊  ∀ 𝒊, 𝒋; 𝒅𝒊𝒗𝝈 ∈ (𝑳
𝟐(𝛀))𝟐}, 

 

(9)  

∫
𝜴

(𝑬: 𝝈): 𝝉𝒅𝒙 + ∫
𝜴

𝒖. 𝒅𝒊𝒗𝝉𝒅𝒙  

= ∫
𝜞𝒖

𝒖𝝉.𝒏𝒅𝜞 ∀𝝉 ∈ 𝑯𝟎(𝒅𝒊𝒗,𝜴) 

(12)  

∫
𝜴

𝒗. 𝒅𝒊𝒗𝝈𝒅𝒙 + ∫
𝜴

𝒇. 𝒗𝒅𝒙 

= 𝟎 ∀𝒗 ∈ 𝑳𝒅𝒊𝒔
𝟐 (𝜴). 

(13)  

𝒅𝒊𝒗𝝉 = (
𝝏𝝉𝟏𝟏
𝝏𝒙

+
𝝏𝝉𝟏𝟐
𝝏𝒚

,
𝝏𝝉𝟐𝟏
𝝏𝒙

+
𝝏𝝉𝟐𝟐
𝝏𝒚

),  

 𝒂(𝝈, 𝝉) + 𝒃(𝝉, 𝒖) = 𝒔(𝝉), 

𝒇𝒐𝒓 𝒂𝒍𝒍 𝝉 ∈ 𝑯𝟎(𝒅𝒊𝒗,𝜴) 
(18)  

𝒃(𝝈, 𝒗) = 𝒍(𝒗), 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒗 ∈ 𝑳𝒅𝒊𝒔
𝟐 (𝜴). (19)  
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and assume that:  

Then for every 𝒍𝟏 ∈ 𝑬′ and 𝒍𝟐 ∈ 𝜳′ there exists a 

unique solution (𝝃,𝝍) of the problem : 

REMARK 1. It is clear that if 𝒂(𝝃𝟏, 𝝃𝟐)  is 

symmetric, the solution (𝝃,𝝍)  of (21)-(22) 

minimizes the functional  

on the subspace of E,  

and the formulation (21)-(22) corresponds to the 

introduction in (25)-(26) of the Lagrange multiplier 

𝝃.  

3.Mixed finite element approximation  

Let 𝑻𝒉; 𝒉 > 𝟎, be a family of rectangulations of 𝛀. 

The edges of elements will be denoted 𝒆𝒊 (i=1, 2, 3 

or i=1, 2, 3, 4) in the two-dimensional case. 

Let us deal first with the abstract framework (21)-

(22). Assume that we are given two sequences 

{𝑬𝒉}𝒉>𝟎  and {𝚿𝒉}𝒉>𝟎  of subspaces 𝑬  and 𝚿 , 

respectively. We set  

We have the following approximation theorem 

Theorem 2. Assume that  

 

has a unique solution. Moreover, there exists a 

constant 𝜸𝒉(𝜶𝒉, 𝜷𝒉) > 𝟎 such that  

 

Then for every 𝒍𝟏 ∈ 𝑬′ and 𝒍𝟐 ∈ 𝚿′, and for every 

𝒉 > 𝟎, the discrete problem 

The dependence of 𝜸𝒉 on𝜶𝒉  and 𝜷𝒉 can be easy 

traced [8]. Clearly if (21) and (22) hold with 

constants 𝜶  and 𝜷  independent of h, then (32) 

holds with a constant 𝜸 independent of h. 

To give a more precise definition of our mixed finite 

element approximation we shall need a few 

definitions. Let us define on an element T 

Let k a positive integer. For a single triangle T we 

define spaces of shape functions  

Here S denotes the 3-dimensional vectorspace of 𝟐 ×
𝟐 symmetric matrices, in which the stress field takes 

it’s values. 

Let:  

𝑷𝒌(𝑿, 𝒀): the space of polynomials on X of degree at 

most k taking values in Y. 

Clearly  

For k=1, the space 𝑽𝑻  has dimension 6 and a 

complete set of degrees of freedom are given by the 

value of the two components at the three nodes 

interior to T. The space 𝚺𝑻 clearly has dimension at 

least 24, since the 𝒅𝒊𝒎𝑷𝟑(𝑻, 𝑺) = 𝟑𝟎  and the 

condition that 𝒅𝒊𝒗𝝉 ∈ 𝑷𝟏(𝑻,ℝ
𝟐)  represents six 

linear constraints. 

  

𝑲 = {𝝃|𝝃 ∈ 𝑬, 𝒃(𝝃,𝝍) = 𝟎 ∀𝝍 ∈ 𝜳}, (20)  

∃𝜶 > 𝟎, 𝒔. 𝒕. 𝒂(𝝃, 𝝃) ≥ 𝜶‖𝝃‖𝑬
𝟐  , ∀𝝃 ∈ 𝑲  (21)  

∃𝜷 > 𝟎, 𝒔. 𝒕. 

𝒔𝒖𝒑
𝝃∈𝑬−{𝟎}

𝒃(𝝃,𝝍)

‖𝝃‖𝑬
𝟐
≥ 𝜷‖𝝃‖𝜳  , ∀𝝍 ∈ 𝜳, 

(22)  

𝒂(𝝃, 𝝃) + 𝒃(𝝃,𝝍) = 〈𝒍𝟏, 𝝃〉, 𝒇𝒐𝒓 𝒂𝒍𝒍  𝝍 ∈ 𝑬, (23)  

𝒃(𝝃,𝝍) = 〈𝒍𝟐, 𝝍〉, 𝒇𝒐𝒓 𝒂𝒍𝒍 𝝍 ∈ 𝜳. (24)  

𝑱(𝝃) =
𝟏

𝟐
𝒂(𝝃, 𝝃) − 〈𝒍𝟏, 𝝃〉 (25)  

𝑲(𝒍𝟐) = {𝝃| 𝝃 ∈ 𝑬,      

𝒃(𝝃,𝝍) = 〈𝒍𝟐, 𝝍〉 ∀𝝍 ∈ 𝜳}, 
(26)  

𝑲𝒉 = {𝝃𝒉|𝝃𝒉 ∈ 𝑬𝒉, 

𝒃(𝝃𝒉, 𝝍𝒉) = 𝟎∀𝝍𝒉 ∈ 𝜳𝒉}, 
(27)  

∃𝜶𝒉 > 𝟎, 𝒔. 𝒕. 𝒂(𝝃, 𝝃)  

≥ 𝜶𝒉‖𝝃‖𝑬
𝟐    ∀𝝃 ∈ 𝑲𝒉 

(28)  

∃𝜷𝒉 > 𝟎, 𝒔. 𝒕. 𝒔𝒖𝒑
𝝃∈𝑬𝒉−{𝟎}

𝒃(𝝃,𝝍)

‖𝝃‖𝑬
 

≥ 𝜷𝒉‖𝝍‖𝜳    ∀𝝍 ∈ 𝜳𝒉. 

(29)  

𝒂(𝝃𝒉, 𝝃) + 𝒃(𝝃,𝝍𝒉) 

= 〈𝒍𝟏, 𝝃〉, 𝒇𝒐𝒓 𝒂𝒍𝒍 𝝃 ∈ 𝑬𝒉, 
(30)  

𝒃(𝝃𝒉, 𝝍) = 〈𝒍𝟐, 𝝍〉, 𝒇𝒐𝒓 𝒂𝒍𝒍 𝝍 ∈ 𝜳𝒉 (31)  

 ‖𝝃 − 𝝃𝒉‖𝑬
+ ‖𝝍−𝝍𝒉‖𝜳 

≤ 𝜸𝒉( 𝒊𝒏𝒇
𝝃𝒉∈𝑬𝒉

‖𝝃 − 𝝃𝒉‖𝑬 

+ 𝒊𝒏𝒇
𝝍𝒉∈𝜳𝒉

‖𝝍−𝝍𝒉‖𝜳). 

(32)  

𝜮𝑻 = 𝑷𝒌+𝟏(𝑻, 𝑺) 

+{𝝉 ∈ 𝑷𝒌+𝟐(𝑻, 𝑺)/𝒅𝒊𝒗𝝉 = 𝟎} 

= {𝝉 ∈ 𝑷𝒌+𝟐(𝑻, 𝑺)/𝒅𝒊𝒗𝝉

∈ 𝑷𝒌(𝑻,ℝ
𝟐)} 

(33)  

𝑽𝑻 = 𝑷𝒌(𝑻,ℝ
𝟐), (34)  

𝒅𝒊𝒎𝑽𝑻 = (𝒌 + 𝟏)(𝒌 + 𝟐). (35)  
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In [18] it is shown that  

and that a unisolvent set of local degrees of freedom 

is given by 

 the values of three components of 𝝉(𝒙) at 

each vertex x of T (9 degrees of freedom) 

 the values of the moments of degree at most 

k of the two normal components of 𝝉  on 

each edge e of T (6k + 6 degrees of freedom) 

 the value of the moments ∫𝑻 𝝉:𝝋𝒅𝒙, 𝝋 ∈

𝑵𝒌(𝑻)  ((𝟑𝒌𝟐 + 𝟓𝒌 − 𝟐)/𝟐  degrees of 

freedom) 

Here  

Where 𝜺  is the infinitesimal strain operator 

(symmetrized gradient), 𝒃𝑻  is the cubic bubble 

function on T (the unique cubic polynomial 

achieving a maximum value of unity on T and 

vanishing on 𝛛𝑻), and J is Airy stress operator  

Note that, on 𝛛𝛀  

𝑱(𝒒)𝒏.𝒏 =
𝛛𝟐𝒒

𝛛𝟐𝒕
,   𝑱(𝒒)𝒏. 𝒕 = −

𝛛𝟐𝒒

𝛛𝒕𝛛𝒏
, 

  

where n and t are the unit normal and tangent vectors 

to 𝛛𝛀, respectively. 

Note that when k = 0, 𝑵𝒌(𝑻) is simply the space of 

constant tensors. 

The associated finite element element space 𝑽𝒉  is 

then the space of all piecewise linear vector fields 

with respect to this triangulation, not subject to any 

interelement continuity conditions. The space 𝚺𝒉 is 

the space of all matrix fields which belong piecewise 

to 𝚺𝑻, subject to the continuity conditions that the 

normal components are continuous across mesh 

edges and all components are continuous at mesh 

vertices. 

The Hellinger-Reissner variational principle 

characterizes the stress field 𝝈 and the displacement 

field u engendered in a planar linearly elastic body 

occupying a region 𝛀 by a body load f as the unique 

critical point of the functional 𝚲 : 𝑯(𝒅𝒊𝒗,𝛀, 𝑺) ×

𝑳𝟐(𝛀,ℝ𝟐) → ℝ defined by 

Here the compliance tensor 𝑨 = 𝑨(𝒙): 𝑺 → 𝑺  is 

bounded and symmetric positive definite uniformly  

for 𝒙 ∈ 𝛀, and the critical point is sought among all 

𝝉 ∈ 𝑯(𝒅𝒊𝒗,𝛀, 𝑺) , the space of square-integrable 

symmetric matrix fields with square-integrable 

divergence, and all 𝒗 ∈ 𝑳𝟐(𝛀,ℝ𝟐) , the space of 

square-integrable vector fields. 

To ensure that a unique critical point of the Hellinger-

Reissner functional 𝚲  exist and that it provides a 

good approximation of the true solution, they must 

satisfy the stability conditions: 

(A1)    𝒅𝒊𝒗𝚺𝒉 ⊂ 𝑽𝒉. 

(A2) There exists a linear operator ∏𝒉 : 𝑯
𝟏(𝛀, 𝑺) →

𝚺𝒉, boundedin £(𝑯𝟏, 𝑳𝟐) uniformly with respect to 

h, and such that 𝒅𝒊𝒗∏𝒉 𝝈 = 𝑷𝒉𝒅𝒊𝒗𝝈 for all 𝝈 ∈

𝑯𝟏(𝛀, 𝑺) , where 𝑷𝒉: 𝑳
𝟐(𝛀,ℝ𝟐) → 𝑽𝒉  denotes the 

𝑳𝟐-projection. 

There is a variant of the lowest degree (k = 1) element 

involving fewer degrees of freedom. For this we take 

𝑽𝑻 to be the space of infinitesimal rigid motions on 

T , i.e., the span of the constant vectorfields and the 

linear vectorfield (−𝒙𝟐, 𝒙𝟏). 

Then for k=1 we choose    

We then have 𝒅𝒊𝒎𝚺𝑻 = 𝟐𝟒 and 𝒅𝒊𝒎𝑽𝑻 = 𝟔. The 

element diagram is shown in Figure 2. 

All of our discretizations of 𝑯(𝒅𝒊𝒗𝛀, 𝑺)  involve 

vertex degrees of freedom. In this respect, they differ 

from the usual mixed elements for scalar elliptic 

problems, such as the Raviart-Thomas elements. As 

mentioned earlier, continuity at the vertices is not 

required for functions belonging to 𝑯(𝒅𝒊𝒗𝛀, 𝑺) . 

Moreover, it impedes the implementation of the 

elements using interelement Lagrange multipliers as 

in [20]. 

Just as the conforming element shown on the left of 

Figure 2 can be simplified to element of Figure 4. The 

displacement space consists of piecewise rigid 

motions, and the stress space is reduced by adding the 

restriction that the divergence be a rigid motion on 

each triangle.  

 

𝒅𝒊𝒎𝜮𝑻 = (𝟑𝒌
𝟐 + 𝟏𝟕𝒌 + 𝟐𝟖)/𝟐. (36)  

𝑵𝒌(𝑻) = 𝜺[𝑷𝒌(𝑻,ℝ
𝟐)] + 𝑱(𝒃𝑻

𝟐𝑷𝒌−𝟐(𝑻,ℝ)). (37)  

𝝉 = 𝑱𝒒:=

(

 
 

𝝏𝟐𝒒

𝝏𝟐𝒚
−
𝝏𝟐𝒒

𝝏𝒙𝝏𝒚

−
𝝏𝟐𝒒

𝝏𝒙𝝏𝒚

𝝏𝟐𝒒

𝝏𝟐𝒙 )

 
 

 (38)  

𝜦(𝝉, 𝒗) = ∫
𝜴

(
𝟏

𝟐
𝑨𝝉: 𝝉 + 𝒅𝒊𝒗𝝉. 𝒗 − 𝒇. 𝒗)𝒅𝒙. (39)  

𝜮𝑻 = {𝝉 ∈ 𝑷𝟑(𝑻, 𝑺)/𝒅𝒊𝒗𝝉 ∈ 𝑷𝟏(𝑻,ℝ
𝟐)}. (40)  
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FIG. 2- Element diagrams for the conforming elements in the 

cases k = 1. 

  
FIG. 3- Element diagrams for the conforming elements in the 

cases k = 2. 

 
FIG. 4- A simplified element pair. 

 

We define a space  

 

and the space  

   

We chose finite-dimensional subspace 

𝑯𝟎
𝒉(𝒅𝒊𝒗,𝛀) ⊂ 𝑯𝟎(𝒅𝒊𝒗,𝛀). 

A mixed finite element approximation of (12)-(13) is 

defined by 

Find 𝝈𝒉 ∈ 𝚺𝒉 and 𝒖𝒉 ∈ 𝑽𝒉 such that  

 

 

 

 

We obtain a system of linear equations  

where 𝑮 = [𝒔𝒎] and 𝑭 = [𝒍𝒎] 

l and s are defined in (16) and (17) respectively. 

The matrix associated for the system (45) is 

symmetric indefinite. We use the iterative methods 

Minimum Residual Method (MINRES) for solving 

the symmetric system.  

4.Error analysis 

Having established the stability properties (A1) and 

(A2) for the spaces 𝚺𝒉 and 𝑽𝒉, we conclude that the 

Hellinger-Reissner functional 𝚲 has a unique critical 

point (𝝈𝒉, 𝒖𝒉) over 𝚺𝒉 × 𝑽𝒉, i.e., the mixed method 

is well-defined. 

Theorem 3. If (𝝈, 𝒖) is the solution of (12)-(13) 

and (𝝈𝒉, 𝒖𝒉) is the solution of (30)-(31), there exist 

a constant 𝑪 > 𝟎 such that:  

REMARK 2. More technical arguments allow us to 

avoid the regularity assumption 𝒅𝒊𝒗𝝈 ∈ (𝑳𝟐(𝛀))𝟐. 

In this case 𝝈 ∈ 𝑯(𝒅𝒊𝒗,𝛀). 

The following theorem, which is proven in [13], 

gives an error estimate. 

Theorem 4. Let (𝝈, 𝒖) is the unique critical point 

of the Hellinger-Reissner functional over 

𝑯(𝒅𝒊𝒗𝛀, 𝑺) × 𝑳𝟐(𝛀,ℝ𝟐) , and let (𝝈𝒉, 𝒖𝒉) is the 

unique critical point over ∑𝒉 × 𝑽𝒉, where ∑𝒉  and 

𝑽𝒉  are the spaces defined above for some integer 

𝒌 ≥ 𝟏. 

  

𝜮𝒉 = {𝝉𝒉 ∈ 𝑯(𝒅𝒊𝒗,𝜴), 𝝉𝒉|𝑻 ∈ 𝜮𝑻∀𝑻 ∈ 𝑻𝒉} (41)  

𝑽𝒉 = {𝒗𝒉 ∈ 𝑳𝒅𝒊𝒔
𝟐 (𝜴), 𝒗𝒉|𝑻 ∈ 𝑷𝟏(𝑻,ℝ

𝟐)∀𝑻

∈ 𝑻𝒉}. 
(42)  

∫
𝜴

(𝑬: 𝝈𝒉): 𝝉𝒉𝒅𝒙 +∫
𝜴

𝒖𝒉. 𝒅𝒊𝒗𝝉𝒉𝒅𝒙 

= ∫
𝜞𝒖

𝒖𝝉𝒉. 𝒏𝒅𝜞  ∀𝝉𝒉 ∈ 𝑯𝟎
𝒉(𝒅𝒊𝒗,𝜴) 

(43)  

∫
𝜴

𝒗𝒉. 𝒅𝒊𝒗𝝈𝒉𝒅𝒙 +∫
𝜴

𝒇. 𝒗𝒉𝒅𝒙 

= 𝟎  ∀𝒗𝒉 ∈ 𝑽𝒉. 

(44)  

(𝑨 𝑩𝑻

𝑩 𝟎
)(
𝑻
𝑼
) = (

𝑮
𝑭
)  (45)  

‖𝝈 − 𝝈𝒉‖𝑯(𝒅𝒊𝒗) + ‖𝒖 − 𝒖𝒉‖𝑳𝟐

≤ 𝑪 𝒊𝒏𝒇
𝝉∈𝜮𝒉,𝒗∈𝑽𝒉

(‖𝝈 − 𝝉‖𝑯(𝒅𝒊𝒗)

+ ‖𝒖 − 𝒗‖𝑳𝟐). 

(46)  
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Then : 

For this element pair defined in (40), we have  

5.The linear fracture mechanics 

In short, the linear fracture mechanics is the study of 

the effect of the presence of a crack in a solid 

subjected to different types of loading, its purpose is 

to predict when, how and where would propagate the 

crack. We shrunk the assumption of small 

perturbation (PPH) and quasi-static evolution of 

cracks and it would uses the assumption of plane 

strain. 

There are three primary forms of crack width, shown 

in Fig.5. One can clearly distinguish the mode I, 

where the displacement is in the same direction as the 

force exerted is the most dangerous mode. That is 

why we are particularly interested. 

Modes of crack opening: 

 
FIG. 5- Crack Modes 

The prediction of the propagation of a crack, 

necessarily involves the calculation of the stress 

intensity near the crack tip. However, the crack 

propagation depends on not only the loading but also 

the geometry, size and location of the crack, which is 

why we use the stress intensity factor K that takes 

into account all its features. To facilitate the 

prediction of whether or not the propagation of the 

crack in the field of study. Several scientific research 

had addressed the problem of the cracking, and were 

able to establish the formulas, and analytical 

approximation of the stress intensity factor, for 

relatively simple test cases. 

5.1. Analytical compute of stress intensity 

factor 
We can calculate the stress intensity for the three 

modes of cracking factor; in general, we calculate the 

stress intensity factor by the following formulation: 

Where “σ” is the stress applied to the overall 

structure, “a” the length of the crack and "𝒇 𝒋" is the 

correction factor taking into account the shape of the 

crack geometry and structure. 

5.2. Numerical compute of stress intensity 

factor 

The most used parameter in linear fracture mechanics 

[21] to characterize a crack is the J-integral. J-

integral predicts initiation, propagation and 

instability of a crack in ductile materials. According 

to [22,23] the J-integral is independent of the path 

followed and the geometry of the domain, it depends 

mainly the change in potential energy at an advanced 

crack. In the context of quasi-static analysis the J-

integral [24] is defined in two dimensions as: 

 

Where  is a contour beginning on the bottom crack 

surface and ending on the top surface, as shown in 

(FIG.6) ; the limit 𝚪 → 𝟎 indicates that 𝚪 shrinks on 

to the crack tip; 𝒒 is a unit vector in the virtual crack 

extension direction; and 𝒏  is the outward normal  

to 𝚪. 𝑯 is given by 

 

 

 

FIG. 6- Contour for evaluation of the J-integral. 

‖𝝈 − 𝝈𝒉‖𝟎 ≤ 𝒄𝒉
𝒎‖𝝈‖𝒎, 𝟏 ≤ 𝒎 ≤ 𝒌+ 𝟐, (47)  

‖𝒅𝒊𝒗𝝈 − 𝒅𝒊𝒗𝝈𝒉‖𝟎 ≤ 𝒄𝒉
𝒎‖𝒅𝒊𝒗𝝈‖𝒎, 𝟎

≤ 𝒎 ≤ 𝒌+ 𝟏, 

(48)  

‖𝒖 − 𝒖𝒉‖𝟎 ≤ 𝒄𝒉
𝒎‖𝒖‖𝒎+𝟏, 𝟏 ≤ 𝒎

≤ 𝒌 + 𝟏. 

(49)  

‖𝝈 − 𝝈𝒉‖𝟎 ≤ 𝒄𝒉
𝒎‖𝝈‖𝒎, 𝟏 ≤ 𝒎 ≤ 𝟐, (50)  

‖𝒅𝒊𝒗𝝈 − 𝒅𝒊𝒗𝝈𝒉‖𝟎 ≤ 𝒄𝒉
𝒎‖𝒅𝒊𝒗𝝈‖𝒎, 𝟎

≤ 𝒎 ≤ 𝟏, 

(51)  

‖𝒖 − 𝒖𝒉‖𝟎 ≤ 𝒄𝒉‖𝒖‖𝟐. (52)  

𝑲𝒋 = 𝝈.√𝝅. 𝒂. 𝒇𝒋 (53)  

𝑱 = 𝒍𝒊𝒎
𝜞→𝟎

∫𝒏.𝑯. 𝒒 𝒅𝜞
𝜞

 (54)  

𝑯 = 𝑾. 𝑰 − 𝝈.
𝝏𝒖

𝝏𝑿
 (55)  
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For elastic material behavior 𝑾 is the elastic strain 

energy; for elastic-plastic or elastic-viscoplastic 

material behavior 𝑾 is defined as the elastic strain 

energy density plus the plastic dissipation, thus 

representing the strain energy in an “equivalent 

elastic material.” This implies that the J-integral 

calculation is suitable only for monotonic loading of 

elastic-plastic materials. In linear elasticity, the J-

integral is the energy of Griffith. 

 

In plane stress 𝑬∗ = 𝑬 

In Plane strain 𝑬∗ =
𝑬

𝟏−𝝊𝟐
 

From equation (57) we could deduce the stress 

intensity factor for different mode cracking 

(𝐾𝐼 , 𝐾𝐼𝐼 , 𝐾𝐼𝐼𝐼). 

6.Numerical simulation 

In this section some numerical results of calculations 

with mixed finite element Method and commercial 

code will be presented. Using our solver, we run 

Crack in a rectangular plate subjected to uniaxial 

tension [3] with a number of different model 

parameters. 

 

6.1. Numerical test 1: convergence rate 
We will study the numerical convergence of a 

cracked plate subjected to a linear load, in our case, 

the fissure is inclined at an angle of 45𝑜. Is named 

"h" the height of the plate and "b" its width, while 

"2a" is the length of the crack. 

The purpose of this study is to make a comparison 

between the convergence results for the standard 

finite element and mixed finite elements, to make it 

will vary the mesh size from largest to smallest and 

take as output value displacement. Then we can 

compare the two methods and conclude the results. 

Let the numerical test data: 

 

ℎ 10 

𝑏 10 

𝑎 1 

𝜎 1(𝑆𝐼) 

Material: Young's modulus 100 (SI) 

and Poisson's ratio 0.3 

FIG. 7- Numerical Test for a cracked plate subjected to a linear 

load 

 

Results 

 
FIG. 8- Stress obtained with Max Size of Mesh By Mixed Finite 

Element Method (Left) And classical Finite Element Method 

(Right). 

 
FIG. 9- Stress obtained with Minimum Size of mesh By Mixed 

Finite Element Method (Left) And classical Finite Element 

Method (Right). 

𝑱 = 𝑮 (56)  

𝑱 =
(𝑲𝑰

𝟐 +𝑲𝑰𝑰
𝟐 )(𝟏 − 𝝊𝟐)

𝑬∗
+
𝟏 + 𝝊

𝑬
𝑲𝑰𝑰𝑰
𝟐  (57)  
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From these results, we can see a distribution of stress 

field quite similar, it is clear that a coarse mesh gives 

bad results while a fine mesh gives very good results, 

however, a fine mesh takes longer that a coarse mesh. 

Which lead us to search for the optimal mesh that 

gives relatively accurate results but also consume less 

resource by its speed.  

 

 

FIG. 10- Convergence rate for FEM. 

 
FIG. 11- Convergence rate for Mixed-FEM. 

 
FIG. 12- Error obtained with Mixed-FEM and FEM. 

We can calculate the error comparing the results with 

the reference value; this value corresponds to the 

finest mesh. This method would allow calculate 

relative errors in the case where you could not have 

analytical or experimental results. 

𝑬𝒓𝒊  = |𝑼𝒊 −𝑼𝒓𝒆𝒇| 

From these tests, we can see that the results of the two 

methods are very similar with a slight advantage for 

the mixed finite element methods, based on the 

results can be observed that for the Mixed-FEM 

convergence is faster, and more stable from size 

(0.1). 

6.2. Numerical test 2: stress intensity 

factor  

Any study of fracture mechanics must analyze the 

stress intensity factor, which is important for the 

characterization of the status of cracking and chances 

of its spread. In this study, we will compare the 

results of two methods, the standard finite element 

and mixed finite element. For this, we will compare 

important results for fracture mechanics including 

stress intensity factor. 

For the numerical test, we will study the impact of the 

length of the crack on a plate, using both FEM and 

FEM Mixed-methods, the goal is to calculate the 

stress intensity factor for each case and compare two 

methods with analytical approximations.  
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h 10 

b 10 

2a 
0.5 

to 4 

σ 
1 

(SI) 

Material 

Young's 

modulus 

100 

(SI) 

Poisson's 

ratio 
0.3 

 

FIG. 13- Numerical test data. 

 

Results 
 FEM (a=2) MIXED-FEM (a=2) 

𝜎𝑦𝑦 3.998 (SI) 3.463 (SI) 

𝜎𝑥𝑦 0.897 (SI) 0.872 (SI) 

𝑈𝑦𝑦 0.106 (SI) 0.106 (SI) 

 

 
FIG. 14- Stress σyy By Mixed Finite Element Method (Left) And 

Stress Solution (Right). 

 

FIG. 15- Stress 𝜎𝑥𝑦 By Mixed Finite Element Method (Left) And 

Stress Solution (Right) 

 

 
FIG. 16- Displacement Uyy by Mixed Finite Element Method 

(Left) And Displacement Solution (Right). 

To calculate the stress intensity factor approximating 

[25] is used in the case of a cracked plate subjected 

to a longitudinal tension. we replace in the formula 

(53) 𝒇𝒋 by : 

we obtain: 

 

Crack 
KI-

Analytic 

KI-

FEM 

Error % 

- FEM 

KI-

MIXED-

FEM 

Error %  

MIXED-

FEM 

0.5 
0.88774

5028 

0.68

4745
789 

29.6459
2746 

0.70735 
25.5029

3747 

1 
1.25793

7058 

0.84

5924
497 

48.7055

9521 

0.85346

5 

47.3917

5685 

1.5 
1.54369

8435 

1.04

9740
196 

47.0552
8487 

1.06281
5 

45.2462
0323 

2 
1.78604

3483 

1.23

8281
727 

44.2356
3268 

1.25515
9617 

42.2961
2392 

𝒇𝑰 = √𝒔𝒆𝒄
𝝅. 𝒂

𝟐. 𝒃
 (58)  

𝑲𝑰 = 𝝈√𝝅. 𝒂√𝒔𝒆𝒄
𝝅. 𝒂

𝟐. 𝒃
 (59)  
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2.5 
2.00082

6901 

1.42

2635
079 

40.6423
1449 

1.44419
2529 

38.5429
4782 

3 
2.19616

4798 

1.61

0395

432 

36.3742

5662 

1.63664

8417 

34.1867

1818 

3.5 
2.37686

9965 

1.80

5631
757 

31.6364
7327 

1.83682
4179 

29.4010
6042 

4 
2.54607

2873 

2.01

0840
893 

26.6173
2125 

2.02146 
25.9521

7681 

Table 1. Comparison of K1-FEM, K1-Mixed and 

K1-Analytical with different length of crack. 

 
FIG. 17- The Stress Intensity Factor computed with Analytical, 

Mixed-FEM And FEM methods. 

 

 
FIG. 18- The Error-SIF computed for Mixed-FEM And FEM 

methods. 

From these results we can conclude that the Mixed-

FEM not only gives good results, but slightly more 

accurate than the conventional method FEM results. 

we chose to compare the stress intensity factors, 

given its importance in the field of linear fracture 

mechanics. present results demonstrate that with the 

mixed method could increase the accuracy of the 

results for more complex cases, and avoid too high 

safety factors in the design of product susceptible to 

crack propagation 

7.Conclusion 

In this paper we have presented a mixed finite 

element method for the simulation of a propagating 

crack under linear elastic conditions. It includes 

algorithms for discretization by mixed finite element 

methods. There is a member of the family for each 

polynomial degree, beginning with degree two for the 

stress and degree one for the displacement, and each 

is stable and affords optimal order approximation.  

Numerical results are presented to see the 

performance of the method, and seem to be 

interesting by comparing them with other recent 

results. 

Acknowledgements: The authors would like to 
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